BRIEF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITED SPEAKERS</td>
<td>IV</td>
</tr>
<tr>
<td>ORGANIZING AND STEERING COMMITTEES</td>
<td>V</td>
</tr>
<tr>
<td>SENIOR PROGRAM COMMITTEE</td>
<td>VI</td>
</tr>
<tr>
<td>PROGRAM COMMITTEE</td>
<td>VII</td>
</tr>
<tr>
<td>AUXILIARY REVIEWERS</td>
<td>XII</td>
</tr>
<tr>
<td>SELECTED PAPERS BOOK</td>
<td>XII</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>XIII</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>XV</td>
</tr>
</tbody>
</table>
INVITED SPEAKERS

Kecheng Liu
University of Reading
U.K.

Jan Dietz
Delft University of Technology
The Netherlands

Antoni Olivé
Universitat Politècnica de Catalunya
Spain

José Tribolet
INESC-ID/Instituto Superior Técnico
Portugal

Hans-J. Lenz
Freie Universität Berlin
Germany
ORGANIZING AND STEERING COMMITTEES

CONFERENCE CO-CHAIRS
Joaquim Filipe, Polytechnic Institute of Setúbal / INSTICC, Portugal
Olivier Camp, ESEO, MODESTE, France

PROGRAM CO-CHAIRS
Slimane Hammoudi, ESEO, MODESTE, France
Leszek Maciaszek, Wroclaw University of Economics, Poland and Macquarie University, Sydney, Australia
José Cordeiro, Polytechnic Institute of Setúbal / INSTICC, Portugal

PROCEEDINGS PRODUCTION
Marina Carvalho, INSTICC, Portugal
Helder Coelhas, INSTICC, Portugal
Bruno Encarnação, INSTICC, Portugal
Ana Guerreiro, INSTICC, Portugal
Filipe Mariano, INSTICC, Portugal
Andreia Moita, INSTICC, Portugal
Raquel Pedrosa, INSTICC, Portugal
Vítor Pedrosa, INSTICC, Portugal
Cláudia Pinto, INSTICC, Portugal
Cátia Pires, INSTICC, Portugal
Susana Ribeiro, INSTICC, Portugal
Rui Rodrigues, INSTICC, Portugal
Sara Santiago, INSTICC, Portugal
André Santos, INSTICC, Portugal
Fábio Santos, INSTICC, Portugal
José Varela, INSTICC, Portugal

CD-ROM PRODUCTION
Pedro Varela, INSTICC, Portugal

GRAPHICS PRODUCTION AND WEBDESIGNER
André Lista, INSTICC, Portugal
Mara Silva, INSTICC, Portugal

SECRETARIAT
Vítor Pedrosa, INSTICC, Portugal

WEBMASTER
Susana Ribeiro, INSTICC, Portugal
Senior Program Committee

Balbir Barn, Middlesex University, U.K.
Senén Barro, University of Santiago de Compostela, Spain
Albert Cheng, University of Houston, U.S.A.
Jan Dietz, Delft University of Technology, The Netherlands
Schahram Dustdar, Vienna University of Technology, Austria
António Figueiredo, University of Coimbra, Portugal
Nuno Guimarães, Lasige / ISCTE-University Institute of Lisbon, Portugal
Jan Jürjens, TU Dortmund & Fraunhofer ISST, Germany
Kecheng Liu, University of Reading, U.K.
Pericles Loucopoulos, Harokopio University of Athens, Greece
Andrea de Lucia, Università degli Studi di Salerno, Italy

Yannis Manolopoulos, Aristotle University, Greece
José Legattheaux Martins, FCT/UNL, Portugal
Masao Johannes Matsumoto, Solution Research Lab, Japan
Alain Pirotte, Université catholique de Louvain, Belgium
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands
Colette Rolland, Université Paris 1 Panthéon-Sorbonne, France
Narcyz Roztocki, State University of New York at New Paltz, U.S.A.
Abdel-Badeeh Mohamed Salem, Ain Shams University, Egypt
Bernadette Sharp, Staffordshire University, U.K.
Alexander Smirnov, SPIIRAS, Russian Academy of Sciences, Russian Federation
Ronald Stamper, Measur Ltd, U.K.
François Vernadat, European Court of Auditors, France
PROGRAM COMMITTEE

Lena Aggestam, Region Västra Götaland, The Hospital in Alingsås, Sweden
Miguel Angel Martinez Aguilar, University of Murcia, Spain
Adeel Ahmad, Laboratoire d’Informatique Signal et Image de la Côte d’Opale, France
Antonia Albani, University of St. Gallen, Switzerland
Patrick Albers, ESEO - Ecole Superieure D’Electronique de L’Ouest, France
Abdullah Alnajim, Qassim University, Saudi Arabia
Mohammad Al-Shamri, Ibb University, Yemen
Rainer Alt, University of Leipzig, Germany
Andreas S. Andreou, Cyprus University of Technology, Cyprus
Wudhichai Assawinchaichote, King Mongkut’s University of Technology Thonburi, Thailand
Tamara Babaian, Bentley University, U.S.A.
Cecilia Baranauskas, State University of Campinas - Unicamp, Brazil
Rémi Bastide, ISIS - UFAC Jean-François Champollion, France
Bernhard Bauer, University of Augsburg, Germany
Orlando Belo, University of Minho, Portugal
Jorge Bernardino, Polytechnic Institute of Coimbra - ISEC, Portugal
Frederique Biennier, INSA Lyon, France
Sandro Bimonte, Irstea, France
Jean-Louis Boulanger, CERTIFER, France
Coral Calero, University of Castilla - La Mancha, Spain
Daniel Antonio Callegari, PUC-RS Pontificia Universidade Catolica do Rio Grande do Sul, Brazil
Luis M. Camarinhã-Matos, New University of Lisbon, Portugal
Manuel Isidoro Capel-Tuñón, University of Granada, Spain
Glauco Carneiro, Salvador University (UNIFACS), Brazil
Angélica Caro, University of Bio-Bio, Chile
Nunzio Casalino, Università degli Studi Guglielmo Marconi, Italy
Marco Antonio Casanova, PUC-Rio, Brazil
Luca Cernuzzi, Universidad Católica "Nuestra Señora de la Asunción", Paraguay
David Chen, Laboratory IMS, France
Ming-Puu Chen, National Taiwan Normal University, Taiwan
Shiping Chen, CSIRO ICT Centre Australia, Australia
Shu-Ching Chen, Florida International University, U.S.A.
Max Chevalier, Institut de Recherche en Informatique de Toulouse UMR 5505, France
Nan-Hsing Chiu, Chien Hsin University of Science and Technology, Taiwan
Witold Chmielarz, Warsaw University, Poland
William Cheng-Chung Chu, Tunghai University, Taiwan
Daniela Barreiro Claro, Universidade Federal da Bahia (UFBA), Brazil
Pedro Gouvêa Coelho, State University of Rio de Janeiro, Brazil
Francesco Colace, Università Degli Studi di Salerno, Italy
Cesar Collazos, Universidad del Cauca, Colombia
Antonio Corral, University of Almeria, Spain
Mariela Cortés, State University of Ceará, Brazil
Karl Cox, University of Brighton, U.K.
Sharon Cox, Birmingham City University, U.K.
Broderick Crawford, Pontificia Universidad Catolica de Valparaíso, Chile
PROGRAM COMMITTEE (CONT.)

Maria Damiani, University of Milan, Italy
Vincenzo Deufemia, Università di Salerno, Italy
Dulce Domingos, Faculty of Science - University of Lisbon, Portugal
César Domínguez, Universidad de La Rioja, Spain
António Dourado, University of Coimbra, Portugal
Juan C. Dueñas, Universidad Politécnica de Madrid, Spain
Alan Eardley, Staffordshire University, U.K.
Sophie Ebersold, Université Toulouse II-Le Mirail, France
Hans-Dieter Ehrich, Technische Universität Braunschweig, Germany
Fabrício Enembreck, Pontifical Catholic University of Paraná, Brazil
Sean Eom, Southeast Missouri State University, U.S.A.
Hossam Faheem, Ain Shams University, Faculty of Computer and Information Sciences, Egypt
João Faria, FEUP - Faculty of Engineering of the University of Porto, Portugal
Jamel Feki, University of Sfax - Faculté des Sciences Economiques et de Gestion de Sfax, Tunisia
Edilson Ferneda, Catholic University of Brasília, Brazil
Maria João Silva Costa Ferreira, Universidade Portucalense, Portugal
Paulo Ferreira, INESC-ID / IST, Portugal
George Feuerlicht, University of Technology, Sydney (UTS), Australia
Barry Floyd, California Polytechnic State University, U.S.A.
Rita Franzese, Università degli Studi di Salerno, Italy
Ariel Frank, Bar-Ilan University, Israel
Ana Fred, Instituto de Telecomunicações / IST, Portugal
Lixin Fu, University of North Carolina, Greensboro, U.S.A.

Mariagrazia Fugini, Politecnico di Milano, Italy
Maria Ganzha, SRI PAS and University of Gdansk, Poland
Mouzhi Ge, Technical University Munich, Germany
Johannes Gettinger, University of Hohenheim, Germany
Daniela Giordano, University of Catania, Italy
Raúl Giráldez, Pablo de Olavide University of Seville, Spain
Pascual Gonzalez, Universidad de Castilla-La Mancha, Spain
Robert Goodwin, Flinders University of South Australia, Australia
Raj Gopalan, Curtin University, Australia
Feliz Gouveia, University Fernando Pessoa / Cerem, Portugal
Virginie Govaere, INRS, France
Janis Grabis, Riga Technical University, Latvia
Maria Carmen Penadés Gramaje, Universitat Politècnica de València, Spain
Gerda Groener, University of Koblenz-Landau, Germany
Sven Groppe, University of Lübeck, Germany
Tom Gross, Bauhaus-University Weimar, Germany
Wieslawa Grynczewicz, Wrocław University of Economics, Poland
Slimane Hammoudi, ESEO, MODESTE, France
Karin Harbusch, Universität Koblenz-Landau, Germany
Markus Helfert, Dublin City University, Ireland
Włodzimierz Homenda, Warsaw University of Technology, Poland
Wei-Chiang Hong, Oriental Institute of Technology, Taiwan
Miguel J. Hornos, University of Granada, Spain
Hesuan Hu, Nanyang Technological University, Singapore
PROGRAM COMMITTEE (cont.)

Kai-I Huang, Tunghai University, Taiwan
Miroslav Hudec, University of Economics in Bratislava, Slovak Republic
Arturo Jaime, Universidad de La Rioja, Spain
Wassim Jaziri, College of Computer Science and Engineering, Saudi Arabia
Sabina Jeschke, RWTH Aachen University, Germany
Edson Oliveira Jr, State University of Maringá, Brazil
Nikitas Karanikolas, Technological Educational Institute of Athens (TEI-A), Greece
Andrea Kienle, University of Applied Sciences, Dortmund, Germany
Marite Kirikova, Riga Technical University, Latvia
Alexander Knapp, Universität Augsburg, Germany
Natallia Kokash, Leiden University, The Netherlands
John Krogstie, NTNU, Norway
Rob Kusters, Eindhoven University of Technology & Open University of the Netherlands, The Netherlands
Wim Laurier, Université Saint-Louis, Belgium
Ramon Lawrence, University of British Columbia Okanagan, Canada
Jintae Lee, Leeds School of Business at University of Colorado, Boulder, U.S.A.
Alain Leger, France Telecom Orange Labs, France
Daniel Lemire, TELUQ, Canada
Joerg Leukel, University of Hohenheim, Germany
Lei Li, Hefei University of Technology, China
Da-Yin Liao, Applied Wireless Identifications, U.S.A.
Therese Libourel, University of Montpellier II (IRD,UR,UAG), France
Luis Jiménez Linares, University of de Castilla-La Mancha, Spain
Panos Linos, Butler University, U.S.A.

Stephane Loiseau, LERIA, University of Angers, France
João Correia Lopes, Faculdade de Engenharia da Universidade do Porto/INESC Porto, Portugal
Maria Filomena Cerqueira de Castro Lopes, Universidade Portucalense Infante D. Henrique, Portugal
Miguel R. Luaces, Universidade da Coruña, Spain
Wendy Lucas, Bentley University, U.S.A.
André Ludwig, University of Leipzig, Germany
Mark Lycett, Brunel University, U.K.
Jose Antonio Macedo, Federal University of Ceara, Brazil
Leszek Maciaszek, Wroclaw University of Economics, Poland and Macquarie University, Sydney, Australia
Cristiano Maciel, Universidade Federal de Mato Grosso, Brazil
Rita Suzana Pitangleira Maciel, Federal University of Bahia, Brazil
S. Kami Makki, Lamar University, U.S.A.
Pierre Maret, Université de Saint Etienne, France
Herve Martin, Grenoble University, France
Katsuhisa Maruyama, Ritsumeikan University, Japan
Viviana Mascardi, University of Genoa, Computer Science Department, Italy
David Martins de Matos, L2F / INESC-ID Lisboa / Instituto Superior Técnico, Portugal
Wolfgang Mayer, University of South Australia, Australia
Zaamoune Mehdi, Irstea, France
Andreas Meier, University of Fribourg, Switzerland
Jerzy Michnik, University of Economics in Katowice, Poland
Marek Milosz, Lublin University of Technology, Poland
Michele Missikoff, IASI-CNR, Italy
Vladimír Modrák, Technical University of Košice, Faculty of Manufacturing Technology, Slovak Republic

Ghodrat Moghadampour, Vaasa University of Applied Sciences, Finland

Pascal Molli, LINA, University of Nantes, France

Lars Mönch, FernUniversität in Hagen, Germany

Valérie Monfort, Université de Paris I Panthéon Sorbonne, France

Francisco Montero, University of Castilla-la Mancha, Spain

Carlos León de Mora, University of Seville, Spain

João Luís Cardoso de Moraes, Federal University of São Carlos, Brazil

Fernando Moreira, Universidade Portucalense, Portugal

Nathalie Moreno, University of Malaga, Spain

Haralambos Mouratidis, University of East London, U.K.

Pietro Murano, University of Salford, U.K.

Tomoharu Nakashima, Osaka Prefecture University, Japan

Ovidiu Noran, Griffith University, Australia

Jose Angel Olivas, Universidad de Castilla-La Mancha, Spain

Andrés Muñoz Ortega, Catholic University of Murcia (UCAM), Spain

Samia Oussena, University of West London, U.K.

Sietse Overbeek, University of Duisburg-Essen, Germany

Mieczysław Owoc, Wroclaw University of Economics, Poland

Claus Pahl, Dublin City University, Ireland

Tadeusz Pankowski, Poznan University of Technology, Poland

Eric Pardede, La Trobe University, Australia

Rodrigo Paredes, Universidad de Talca, Chile

Massimiliano Di Penta, University of Sannio, Italy

Dana Petcu, West University of Timisoara, Romania

Yannis A. Phillis, Technical University of Crete, Greece

Josef Pieprzyk, Macquarie University, Australia

Luis Ferreira Pires, University of Twente, The Netherlands

Ángeles Saavedra Places, University of A Coruña, Spain

Malgorzata Plechawska-Wojcik, Lublin University of Technology, Poland

Geert Poels, Ghent University, Belgium

Michal Polasik, Nicolaus Copernicus University, Poland

Luigi Pontieri, National Research Council (CNR), Italy

Jolita Ralyte, University of Geneva, Switzerland

T. Ramayah, Universiti Sains Malaysia, Malaysia

Pedro Ramos, Instituto Superior das Ciências do Trabalho e da Empresa, Portugal

Francisco Regateiro, Instituto Superior Técnico, Portugal

Ulrich Reimer, University of Applied Sciences St. Gallen, Switzerland

Nuno de Magalhães Ribeiro, Universidade Fernando Pessoa, Portugal

Michele Risi, University of Salerno, Italy

Alfonso Rodriguez, University of Bio-Bio, Chile

Daniel Rodriguez, University of Alcalá, Spain

Oscar Mario Rodríguez-Elias, Institute of Technology of Hermosillo, Mexico

Erik Rolland, University of California at Merced, U.S.A.

Luciana Alvim Santos Romani, Embrapa Agriculture Informatics, Brazil

Jose Raul Romero, University of Cordoba, Spain

David G. Rosado, University of Castilla-la Mancha, Spain

Gustavo Rossi, Liferay, Argentina
Artur Rot, Wroclaw University of Economics, Poland
Francisco Ruiz, Universidad de Castilla-La Mancha, Spain
Belen Vela Sanchez, Rey Juan Carlos University, Spain
Luis Enrique Sánchez, Sicaman Nuevas Tecnologias S.L., Spain
Manuel Filipe Santos, University of Minho, Portugal
Jurek Sasiadek, Carleton University, Canada
Isabel Seruca, Universidade Portucalense, Portugal
Ahm Shamsuzzoha, University of Vaasa, Finland
Jianhua Shao, Cardiff University, U.K.
Mei-Ling Shyu, University of Miami, U.S.A.
Markus Siepermann, TU Dortmund, Germany
Alberto Rodrigues Silva, Instituto Superior Técnico, Portugal
Sean Siqueira, Federal University of the State of Rio de Janeiro, Brazil
Hala Skaf-mollah, Nantes University, France
Michel Soares, Federal University of Sergipe, Brazil
Ricardo Soto, Pontificia Universidad Catolica de Valparaiso, Chile
Chantal Soule-Dupuy, Universite Toulouse 1, France
Chris Stary, Johannes Kepler University of Linz, Austria
Stefan Strecker, University of Hagen, Germany
Vijayan Sugumaran, Oakland University, U.S.A.
Hiroki Suguri, Miyagi University, Japan
Lily Sun, University of Reading, U.K.
Jerzy Surma, Warsaw School of Economics, Poland
Miroslav Sveda, Brno University of Technology, Czech Republic
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Tania Tait, Maringá State University, Brazil
Mohan Tanniru, Oakland University, U.S.A.
Sotirios Terzis, University of Strathclyde, U.K.
Claudine Toffolon, Université du Maine, France
Ying-Mei Tu, Chung Hua University, Taiwan
Theodoros Tzouramanis, University of the Aegean, Greece
José Ângelo Braga de Vasconcelos, Universidade Atlântica, Portugal
Michael Vassilakopoulos, University of Thessaly, Greece
Christine Verdier, LIG - University Joseph Fourier Grenoble, France
Bing Wang, University of Hull, U.K.
Dariusz Wawrzyniak, Wroclaw University of Economics, Poland
Hans Weghorn, BW Cooperative State University Stuttgart, Germany
Hans Weigand, Tilburg University, The Netherlands
Viacheslav Wolfengagen, Institute JurInfoR, Russian Federation
Ouri Wolfson, University of Illinois at Chicago, U.S.A.
Stanislaw Wrycza, University of Gdansk, Poland
Ing-Long Wu, National Chung Cheng University, Taiwan
Mudasser Wyne, National University, U.S.A.
Hongji Yang, De Montfort University, U.K.
Eugenio Zimeo, University of Sannio, Italy
CONTENTS

INVITED SPEAKERS

KEYNOTE SPEAKERS

Semiotics in Visualisation
Kecheng Liu IS-5

Why ERP Systems Will Keep Failing
Jan Dietz IS-9

Conceptual Modeling in Agile Information Systems Development
Antoni Olivé IS-11

An Engineering Approach to Natural Enterprise Dynamics - From Top-down Purposeful Systemic Steering to Bottom-up Adaptive Guidance Control
José Tribolet IS-13

Data Fraud Detection
Hans-J. Lenz IS-15

HUMAN-COMPUTER INTERACTION

FULL PAPERS

Gesture Vocabulary for Natural Interaction with Virtual Museums - Case Study: A Process Created and Tested Within a Bilingual Deaf Children School
Lucineide Rodrigues da Silva, Laura Sánchez Garcia and Luciano Silva 5

Playing Cards and Drawing with Patterns - Situated and Participatory Practices for Designing iTV Applications
Samuel B. Buchdid, Roberto Pereira and M. Cecília C. Baranauskas 14

Video Stream Transmodality
Pierre-Olivier Rocher, Christophe Gravier, Julien Subercaze and Marius Preda 28

Assisting Speech Therapy for Autism Spectrum Disorders with an Augmented Reality Application
Camilla Almeida da Silva, António Ramires Fernandes and Ana Paula Grohmann 38

Adding Semantic Relations among Design Patterns
Marcos Alexandre Rose Silva and Junia Coutinho Anacleto 46

Automatic Interpretation Biodiversity Spreadsheets Based on Recognition of Construction Patterns
Ivelize Rocha Bernardo, André Santanchê and Maria Cecília Calani Baranauskas 57

SHORT PAPERS

An Approach to Circumstantial Knowledge Management for Human-Like Interaction
Alejandro Baldominos, Javier Calle and Dolores Cuadra 71

The Response Systems in the Student’s Learning/Teaching Process - A Case Study in a Portuguese School
Paula Azevedo and Maria João Ferreira 79
Applications of the REST Framework to Test Technology Activation in Different ICT Domains
Antonio Ghezzi, Andrea Cavallaro, Andrea Rangone and Raffaele Balocco

New Approaches for Geographic Location Propagation in Digital Photograph Collections
Davi Oliveira Serrano de Andrade, Hugo Feitosa de Figueirêdo, Cláudio de Souza Baptista and Anselmo Cardoso de Paiva

A Study on the Last 11 Years of ICEIS Conference - As Revealed by Its Words
Julián Esteban Gutiérrez Posada and Maria Cecília Calani Baranauskas

Mintzatek, Text-to-Speech Conversion Tool Adapted to Users with Motor Impairments
J. Eduardo Pérez, Myriam Arrue and Julio Abascal

A MDA-based Approach for Enabling Accessibility Adaptation of User Interface for Disabled People
Lamia Zouhaier, Yoursa Hlaoui Bendaly and Leila Jemni Ben Ayed

Administration of Government Subsidies Using Contactless Bank Cards
Aleksējs Zacepins, Nikolajs Bumanis and Irina Arhipova

Psychological Effect of Robot Interruption in Game
Mitsuhara Matsumoto and Hiroyuki Yasuda

e-Learning Material Presentation and Visualization Types and Schemes
Nauris Paulins, Signe Balina and Irina Arhipova

Expert vs Novice Evaluators - Comparison of Heuristic Evaluation Assessment
Magdalena Borys and Maciej Laskowski

Meta Model of e-Learning Materials Development
Signe Balina, Irina Arhipova, Inga Meirane and Edgars Salna

Do Desperate Students Trade Their Privacy for a Hope? - An Evidence of the Privacy Settings Influence on the User Performance
Tomáš Obšívač, Hana Bydžovská and Michal Brandejs

Handling Human Factors in Cloud-based Collaborative Enterprise Information Systems
Sergio L. Antonaya, Crescencio Bravo Santos and Jesús Gallardo Casero

A Study on the Use of Personas as a Usability Evaluation Method
Thaíssa Ribeiro and Patrícia de Souza

ENTERPRISE ARCHITECTURE

FULL PAPERS

Evolving a Core Banking Enterprise Architecture - Leveraging Business Events Exploitation
Beatriz San Miguel, Jose M. del Alamo and Juan C. Yelmo

ETA Framework - Enterprise Transformation Assessment
Ricardo Dionísio and José Tribolet

PRIMROSe - A Tool for Enterprise Architecture Analysis and Diagnosis
David Naranjo, Mario Sánchez and Jorge Villalobos

Deriving Service Level Agreements from Business Level Agreements - An Approach Towards Strategic Alignment in Organizations
Vitor Almeida Barros, Marcelo Fantinato, Guilherme M. B. Salles and João Porto de Albuquerque
An Assessment Framework for Business Model Ontologies to Ensure the Viability of Business Models

Supporting Process Model Development with Enterprise-Specific Ontologies
Nadejda Alkhaldi, Sven Casteleyn and Frederik Gailly

Understanding Enterprise Architecture through Bodies of Knowledge - A Conceptual Model
Camila Leles de Rezende Rohlfs, Gerd Gröener and Fernando Silva Parreiras

SHORT PAPERS

Behavior-based Decomposition of BPMN 2.0 Control Flow
Jan Kubovy, Dagmar Auer and Josef Küng

Testing Conformance of EJB 3 Enterprise Application Servers
Sander de Putter, Serguei Roubtsov and Alexander Serebrenik

Investigation of IT Sourcing, Relationship Management and Contractual Governance Approaches - State of the Art Literature Review
Matthias Wißotzki, Felix Timm, Jörn Wiebring and Hasan Koç

Towards Multi-level Organizational Control Framework to Manage the Business Transaction Workarounds
Sérgio Guerreiro

A Practical Framework for Business Process Management Suites Selection Using Fuzzy TOPSIS Approach
Ahad Zare Ravasan, Saeed Rouhani and Homa Hamidi

Using Activity Diagrams and DEMO to Capture Relevant Measures in an Organizational Control - A Case Study on Remote Assistance Service
António Gonçalves, Pedro Sousa and Anacleto Correia

Collaborative Evaluation to Build Closed Repositories on Business Process Models
Hugo Ordoñez, Juan Carlos Corrales, Carlos Cobos, Leandro Krug Wives and Lucineia Thom

Evaluation Concept of the Enterprise Architecture Management Capability Navigator
Matthias Wißotzki and Hasan Koç

Architecture Principles Compliance Analysis
João Alves, André Vasconcelos and Pedro Sousa

Towards Business Process Model Extension with Cost Perspective Based on Process Mining - Petri Net Model Case
Dhafer Thabet, Sonia Ayachi Ghannouchi and Henda Hajjami Ben Ghézala

Modeling Value Creation with Enterprise Architecture
P. M. Singh, H. Jonkers, M. E. Iacob and M. J. van Sinderen

Operational Alignment Framework for Improving Business Performance of an Organisation
Jakkapan Kwanroengjai, Kecheng Liu, Chekfoutng Tan and Lily Sun

Business Rules for Business Governance
Naveen Prakash, Deepak Kumar Sharma and Dheerendra Singh

Assurance in Collaborative ICT-enabled Service Chains
Y. W. van Wijk, N. R. T. P. van Beest, K. F. C. de Bakker and J. C. Wortmann
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme Enterprise Architecture Planning (XEAP) - Extrapolating Agile Characteristics to the Development of Enterprise Architectures</td>
<td>376</td>
</tr>
<tr>
<td>Hugo Ramos and André Vasconcelos</td>
<td></td>
</tr>
<tr>
<td>Extending BPMN 2.0 Meta-models for Process Version Modelling</td>
<td>384</td>
</tr>
<tr>
<td>Imen Ben said, Mohamed Amine Chaâbane, Eric Andonoff and Rafik Bouaziz</td>
<td></td>
</tr>
<tr>
<td>Declarative Versus Imperative Business Process Languages - A Controlled Experiment</td>
<td>394</td>
</tr>
<tr>
<td>Natália C. Silva, César A. L. de Oliveira, Fabiane A. L. A. Albino and Ricardo M. F. Lima</td>
<td></td>
</tr>
<tr>
<td>Ontologies and Information Visualization for Strategic Alliances Monitoring and Benchmarking</td>
<td>402</td>
</tr>
<tr>
<td>Barbara Livieri, Mario A. Bochicchio and Antonella Longo</td>
<td></td>
</tr>
<tr>
<td>An Integrated Data Management for Enterprise Systems</td>
<td>410</td>
</tr>
<tr>
<td>Martin Boissier, Jens Krueger, Johannes Wust and Hasso Plattner</td>
<td></td>
</tr>
<tr>
<td>Methodology for Developing and Application Outsourcing in the Cloud Using SOA</td>
<td>419</td>
</tr>
<tr>
<td>Ana Gonzalo Nuño and Concepción M. Gascueña</td>
<td></td>
</tr>
<tr>
<td>Formalization of Validation Extension Metamodel for Enterprise Architecture Frameworks</td>
<td>427</td>
</tr>
<tr>
<td>Samia Oussena, Joe Essien and Peter Komisarczuk</td>
<td></td>
</tr>
<tr>
<td>A Knowledge Management Framework for Knowledge-Intensive SMEs</td>
<td>435</td>
</tr>
<tr>
<td>Thang Le Dinh, Thai Ho Van and Élaine Moreau</td>
<td></td>
</tr>
<tr>
<td>Cyber-physical Information Systems for Enterprise Engineering - Cyber-physical Applications</td>
<td>441</td>
</tr>
<tr>
<td>Timing</td>
<td></td>
</tr>
<tr>
<td>Miroslav Sveda and Patrik Halfar</td>
<td></td>
</tr>
<tr>
<td>Trade off Between Risk Management, Value Creation and Strategic Alignment in Project Portfolio Management</td>
<td>447</td>
</tr>
<tr>
<td>Khadija Benaija and Laila Kjiri</td>
<td></td>
</tr>
<tr>
<td>CRISTAL-iSE - Provenance Applied in Industry</td>
<td>453</td>
</tr>
<tr>
<td>Jetendr Shamdasani, Andrew Branson, Richard McClatchey, Coralie Blanc, Florent Martin, Pierre Bornand, Sandra Massonnat, Olivier Gattaz and Patrick Emin</td>
<td></td>
</tr>
<tr>
<td>Understanding the Role of Business – IT Alignment in Organisational Agility</td>
<td>459</td>
</tr>
<tr>
<td>Charles Crick and Eng Chew</td>
<td></td>
</tr>
<tr>
<td>Models to Aid Decision Making in Enterprises</td>
<td>465</td>
</tr>
<tr>
<td>Suman Roychoudhury, Asha Rajbhoj, Vinay Kulkarni and Deepali Kholkar</td>
<td></td>
</tr>
<tr>
<td>e-Strategy - An Enterprise Engineer Approach to Strategic Management</td>
<td>472</td>
</tr>
<tr>
<td>Rodrigo Pereira and André Vasconcelos</td>
<td></td>
</tr>
<tr>
<td>Towards a General Framework for Business Tests</td>
<td>478</td>
</tr>
<tr>
<td>Marijke Swennen, Benoît Depaire, Koen Vanhoof and Mieke Jans</td>
<td></td>
</tr>
<tr>
<td>A Protocol for Command and Control Systems Integration</td>
<td>484</td>
</tr>
<tr>
<td>Patrick Lara and Ricardo Choren</td>
<td></td>
</tr>
<tr>
<td>Business-IT Alignment and Service Oriented Architecture - A Proposal of a Service-Oriented Strategic Alignment Model</td>
<td>490</td>
</tr>
<tr>
<td>Llanos Cuenca, Andrés Boza, Angel Ortiz and Jos J. M. Trienekens</td>
<td></td>
</tr>
<tr>
<td>Environmental Disclosure - From the Accounting to the Report Perspective</td>
<td>496</td>
</tr>
<tr>
<td>Francisco Carreira, Ana Damião, Rute Abreu and Fátima David</td>
<td></td>
</tr>
</tbody>
</table>
Meta Model of e-Learning Materials Development

Signe Balina¹, Irina Arhipova², Inga Meirane³ and Edgars Salna³

¹University of Latvia, Faculty of Economics and management, Aspazijas Blvd. 5, Riga, Latvia
²IT Kompetences centrs, Lacplesa str. 41, Riga, Latvia
³Datorzinibu centrs JSC, Lacplesa str. 41, Riga, Latvia,
signe.balina@lu.lv, irina.arhipova@llu.lv, {inga.meirane, edgars.salna}@dzc.lv

Abstract: The multitude of software tools is available for the creation of learning resources. However the majority of these tools provided by different software producers do not have a unified mechanism by means of which it would be possible to search and reuse the existing learning resources or their elements. To solve this problem the structures of descriptive data can be used. The aim of this paper is to describe a meta-model of e-learning objects and e-learning formats that could be used in the creation of e-learning materials compatible with various e-learning standards. The meta-data models that are used in widely-known learning resources’ repositories and their structure’s metadata standards providing cross-system compatibility have been evaluated. The key metadata standards of learning objects were identified and their comparative analysis was performed. The e-learning material logical model was created and the essential demands for e-learning object’s data repository were defined. The technologies and their provided electronic learning objects’ classification systems were investigated for the future development of e-learning materials. The scheme of e-LM development process was obtained, which provides the transformation of different modules.

1 INTRODUCTION

Nowadays the necessity for progressive means for teaching has significantly increased due to the usage of modern technologies in educational process. E-learning materials have gradually become a part of those modern tools by means of which new knowledge, skills and proficiencies are acquired both in general education and in the life-long learning. The problem occurs due to the rapid development of technologies – the emergence of various new formats and devices makes a long-term and repetitive usage of e-learning materials difficult.

The e-learning content otherwise constant is represented in various formats for the usage on computers with different operational systems or for the usage in mobile devices. These various types of representation of e-learning resources are created by means of different technological tools, which consequently lead to a multitude of technical formats and standards. These tools range from presentation programs to complicated programming environments provided by different software producers thus lacking a unified mechanism of searching and reusing of existing learning resources or their elements.

To solve this problem the structures of descriptive data can be used. These structures can be described as “data about data” and if such data are organised accordingly to the pre-defined structure they can be used as metadata.

Generally metadata is information about a digital object by means of which the object can be retrieved from the database. In this paper the concept of “metadata” is attributed to the learning objects as follows: elementary electronic learning objects (ee-LO), electronic learning objects (e-LO), and electronic learning materials (e-LM). The metadata of these learning objects can be stored either within e-LM or separately for the development of new e-LM. Therefore it is necessary to investigate the technologies and their classification systems of e-LO (Anido et al., 2002). The idea of e-LO classification scheme is based on the presumption that it would enable to develop the system which allows create multimedia rich and interactive e-LM, reuse it, update, improve, translate, and address it to various target audiences.
The aim of this paper is to describe a meta-model for e-LO and e-LM formats that could be used in the creation of e-LM, which is compatible with various e-learning standards (SCORM, IMS etc.). To reach this aim the following tasks were performed:

- to analyse the current situation of e-learning materials development;
- to evaluate meta-data models used in repositories of widely-known learning resources and their metadata standards used for providing cross-system compatibility;
- to identify main e-LO metadata standards and to perform their comparative analysis;
- to create e-LM logical model and to define e-LO data repository prerequisites;
- to describe e-LM development process.

2 THE CURRENT SITUATION OF E-LM DEVELOPMENT

E-LM encompasses different electronic learning objects meant for content representation and motivation of learners. These electronic learning objects consist of certain content which from the pedagogical point of view is an inseparable unit of information, and it has the predefined type of object’s representation in the particular e-LM. The content of e-LM comprises pictures, text, audio, and video, various types of multimedia. Meanwhile multimedia not only enriches the content of e-learning material but also attracts more users, improves learning experience and learners’ knowledge (Dong & Li, 2005), (Shang et al., 2001), therefore it is important to pay attention to the incorporation of multimedia in e-learning especially regarding adaptive content for learners. This effective usage of multimedia is extensively discussed in the research by Benson, V., Frumkin, L. and Murphy, A. (Benson et al., 2005). Benson, V. has researched also the aspects of flexibility of electronic educational materials by structuring multimedia components. He also provided the description of the system how to integrate multimedia components into e-learning environment (Benson et al., 2005).

Lin, M.I.M. et al. made a research for developing such design and principles as to implement multimedia in learning system, which can generate browsing structure, for example, the content and hyperlinks of hierarchic tables. Taking this system as the sample the research was carried out for analysing the relation between the browsing structures and effectiveness of students’ learning. The result was positive and it proved that browsing structures allow students get better results (Lin et al. 2006).

Learning content personalisation and adaptation has also been in the focus of many researchers. Mei, Q.M.Q. and Shen, J.S.J. have developed a personalized e-learning system which is based on the flow of knowledge (Mei and Shen, 2002). Whereas Xu, D., Wang, H. and Wang, M. described the conceptual model for personalized virtual learning environment which could be perceived as a responsively constructed learning model (Xu et al., 2005).

These researches were taken into account in the creation of e-LO classification schemes, i.e., in the creation of models of e-LO content, their hierarchical structure and collaboration mechanisms between models of content and their representations performed in this paper.

3 META-DATA MODELS AND STANDARDS

The initial aim of the metadata is to make the search for e-learning materials, their usage and re-usage simpler and more effective by providing pre-defined structure of elements which describes learning resource and its usage parameters, as well as representation methods (Ieee-Lom, 2002).

The standardization of learning object’s metadata has been taking place worldwide in various organizations for almost several decades. During this period of time two metadata models of learning objects have become the standards – IEEE LOM base scheme and Dublin Core (DCMI, 2013) set of basic elements.

Summarizing the information about the repositories of learning objects created in USA and Australia such as AMSER, Connexions, EDNA, and GEM, it became clear that primary the Dublin core metadata scheme was used (Najjar J. 2008).

Meanwhile the IEEE LOM metadata scheme primary was used in the learning objects repositories created in Europe, USA, and Canada, as well as within the framework of some international projects such as ARIADNE, CAREO, CLOE, Exploratories, Harvey Projects, iLumina, Jorum, MERLOT, NSDL, Orange Grove, SMETE, and VCILT.

There are several well-known repositories (DLESE, CITADEL, EducaNext, TLF, and FAO LR), various personalized libraries and vocabularies, which have chosen a hybrid model for their
metadata model using both IEEE LOM and Dublin Core metadata.

Nine out of 21 repositories, which were analysed, use partly or fully adapted metadata elements provided by Dublin Core metadata standard. Meanwhile the IEEE LOM metadata scheme was used for the basis or in the combination with Dublin Core for all 16 repositories with the adjustments made accordingly to the system (selectively chosen metadata elements, alternative vocabularies etc.).

Hybrid type meta-models are frequently used comprising both Dublin Core and LOM metadata elements, supplemented with the unique elements for specific aims.

The same principle can be found in the value vocabularies, which can be shared differently depending on the specific needs of the solution.

4 THE KEY META-DATA STANDARDS

It was evident that the primary focus is on two metadata standards: LOM and DCMI. It is necessary to identify similar data elements in these standards which could be compatible, as well as to analyse the usage of individual elements in various systems from the perspective of frequency of their usage and frequency of searching by users.

Similarly, it was considered worthwhile to investigate the legacy of data elements as a result of decomposition when the data elements of lower aggregation level (derived as a result of a decomposition of a learning object of a higher aggregation level) inherit a part of metadata.

The global practice shows that despite the fact that these standards have been in existence for more than ten years and remarkable amount of work has been done for the development of these standards, there are few repositories where they are used in their direct form.

For the majority of the most popular repositories of electronic learning objects these standards are taken over by making adjustments in the metadata scheme. These adjustments are of the most various kind, for example:

- the elements of both standards are used in a symbiosis. The most commonly spread symbiosis is the supplementation of the Dublin Core set of basic elements, for example, the supplementation with the specifically needed metadata elements of software taking them over from IEEE LOM. This method is possible due to the flexibility of Dublin Core set of basic elements;
 - although a metadata standard is chosen its elements are not fully used – the set of elements are narrowed to the specific elements necessary only for the particular software, and elements are classified by their significance;
 - a metadata standard is chosen using only a part of its elements and adding new elements thus supplementing the chosen standard with the software specific data types or vocabularies of classifiers;
 - various combinations of above mentioned scenarios are used.

5 E-LM LOGICAL MODEL AND E-LO DATA REPOSITORY

By means of the acquired knowledge about metadata, their aggregation levels (Friesen et al. 2002), as well as about structure models, it was possible to define e-LO original model which provides concise and structured overview of e-LO inner structure and its logic.

5.1 e-LO Original Model

e-LO original model identifies the possible structures and aggregation levels of e-LO, the interrelations of their characteristics, as well as the classification of e-LO metadata respective to their type and aggregation level. e-LO is generally characterised by its structure, type of representation and meta-information.

The acknowledged worldwide practice shows that the development of generally accepted and universal meta-model practically is not possible due to the general standards, which frequently cannot meet the demands of software users. Meanwhile the detailed standards, i.e., such standards, which could be applied for the overview of all possible scenarios, can be too difficult from the perspective of software users.

If there is only a need to describe small amount of elementary learning objects, the metadata scheme consisting of 60 elements is too broad and unnecessary for users (Ieee-Lom, 2002). The effective description of such an elementary learning object requires no more than 5-7 manually filled metadata elements.

There is not one definite standard for the development of data repositories which could be applied to all types of data repositories of electronic
learning objects, health data objects or objects of other branches. Each data repository has its specific sphere of action. In order to provide the repository’s operation in its full value, several tasks should be solved. First of all, for the development of qualitative and correct operation of the repository it is necessary to investigate and thoroughly analyse the repository’s data, its types, formats, structures, and interrelation. Secondly, the basic demands for the repository’s data should be identified.

There are various technologies and methods for the development of databases. Each of these technologies has its definite scope and available functionality. The majority of database development technologies provide general functionalities by means of which it is possible to solve the specific tasks successfully. Therefore it is possible to choose the most appropriate solution developed by the standards of the industry and by a reliable and competent developer.

5.2 Architecture of e-LM Logical Model

For the storage of each e-LM the data repository should provide the storage of various types of objects and their characterising features which could change accordingly to the object’s aggregation level and information indicated in the specific content of the particular object and at the same time also contain references to other objects.

E-LM, e-LO and ee-LO have their own information, which is not always available for the objects derived or created from their source objects, i.e., they have their own metadata, which should be made available for all object’s descendants. e-LO and ee-LO also could be different types of objects each of which can be saved as a file with different size and content. In order to provide the system’s performance the storage of data objects should be developed differently as it is for the storage of textual information.

For the storage of each of e-LO the data repository should provide the storage of all elements of e-LM logical model’s content providing various versions and languages. E-LM can be made of e-LO or ee-LO, which are arranged in various structures.

These structures could be various types of graphs (for example, hierarchical, tree-type, or cyclic graphs) where the specific e-LO is its peak point and could contain references to other e-LO.

Figure 1 depicts the architecture of e-LM logical model.
model with the representation of links between e-LM elements, their interrelations and possible technical solutions.

The data repositories’ compliance to various types of e-LO storage, processing and output was defined by studying the available data repository solutions. Likewise the most appropriate e-LO storage technical solutions were defined providing the output of respective data repository’s content. The suggestions and description of the potential e-LO data repository’s development in off-line mode were additionally developed.

It is concluded that e-LO data repository’s usage in its full value will be available solely in on-line mode but the opportunity to overview data can be developed also in off-line mode.

The conclusion is drawn that DBMS Microsoft SQL is suitable for the development of e-LO data repository since this type of database provides support not only for relational databases but also for the storage of non-structured data. This is an important factor for the processing of objects and files.

Microsoft SQL also provides various kind of support for the storage of files and binary information which is an alternative solution for „key-value” and makes an important factor for the storage of EO. Non-structured data storage opportunities are important for the processing of metadata provided by Microsoft SQL with XML data type realization.

6 THE PROCESS OF E-LM DEVELOPMENT

The content of e-LM is reusable if the development of e-LM is carried out accordingly to the definite process scheme. There are altogether three formally described and strictly defined e-LM development processes that refer to the specific quality demands and functionalities of the development of e-LM – the extraction of e-LM final results is carried out in accordance with e-LM development, e-LM translation, and EO creation processes.

By applying transformations to the appropriate models of process schemes, the e-LO classification scheme and e-LO original model were obtained.

Previously mentioned models can be improved as well as future models obtained as a result of successively taken actions. By defining the transitions of models and by making the actions formal it is possible to automate the model transformation from one model into another thus obtaining automatic model transformation and reducing the amount of manual actions. The reduced amount of manual actions increases the effectiveness of the developed solution or applied process.

The developed e-LM logical model (Figure 1) supplemented with the conditional module is transformed into HTML 5, which can be used in the generation of e-LM source code for specific technological solutions such as mobile applications, printable documents, and e-LM as web pages.

E-LM visualization model and the description of its operation can be performed in various steps that should be carried out as model transformations.

During the investigation of the process of e-LM development, such scheme of e-LM development process was obtained that allows the changes of different models by means of transformations. The models are defined in the level of their processes and technical realisation thus giving an opportunity to gain the models that are dependent or independent of specific type of technical realization.

7 CONCLUSIONS

The idea of e-LO classification scheme is based on the presumption that such a scheme would enable to develop the system which allows accumulate multimedia rich and interactive e-LM, reuse it, update, improve, translate, and address it to various target audiences. That is the approach to the problem and its possible solution, which cannot be found in the already existing tools. Thus the creation of e-LO classification scheme is a topical issue for the investigation and the development of appropriate software.

By assessing a range of the world’s most popular learning objects’ repositories and browsing services which are used in learning objects’ metadata structures, it is concluded that two of the most popular learning objects’ metadata standards are Dublin Core metadata initiative and IEEE Learning object metadata (LOMv1.0), which are excessively, individually, jointly or in a broadened form used in practically all of 21 investigated solutions of LO repositories. Despite the fact that these standards have been in existence for more than ten years and remarkable amount of work has been done for the development of these standards, there are few repositories where they are used in their direct form. For the majority of the most popular repositories of electronic learning objects these standards are taken over making adjustments in the metadata scheme.
The acknowledged world-wide practice shows that the development of generally accepted and universal meta-model practically is not possible due to the general standards, which frequently cannot meet the demands of software users. Meanwhile the detailed standards, i.e., such standards which could be applied to the overview of all possible scenarios can be too unwieldy from the perspective of software users.

The e-LO data repository’s usage in its full value will be available solely in online mode but the opportunity to overview data can be developed also in offline mode.

The conclusion is drawn that DBMS Microsoft SQL is suitable for the development of e-LO data repository since this database provides support not only for relational databases but also for the storage of non-structured data which is an important factor for the processing of objects and files.

During the research the e-LM development process scheme is obtained, which allows to change different models by means of transformations. The models are defined in the level of their processes and technical realisation thus giving an opportunity to gain new models that are dependent or independent of specific type of technical realization.

ACKNOWLEDGEMENTS

This research is part of a project „Competence Centre of Information and Communication Technologies” run by IT kompetences centrs, Ltd., contract No. L-KC-11-0003, co-financed by European Regional Development Fund.

REFERENCES

DCMI, 2013. Dublin Core Metadata Initiative, Available at: http://dublincore.org/documents/dces/